Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sci Rep ; 14(1): 6873, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519482

RESUMO

Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Humanos , Feminino , Quinases Ciclina-Dependentes/genética , Proteoma/genética , Proteômica , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Mutação , Estrogênios , Receptores de Estrogênio/genética , Fosfoproteínas/genética
2.
NPJ Breast Cancer ; 10(1): 14, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374091

RESUMO

HER2/ERBB2 evaluation is necessary for treatment decision-making in breast cancer (BC), however current methods have limitations and considerable variability exists. DNA copy number (CN) evaluation by droplet digital PCR (ddPCR) has complementary advantages for HER2/ERBB2 diagnostics. In this study, we developed a single-reaction multiplex ddPCR assay for determination of ERBB2 CN in reference to two control regions, CEP17 and a copy-number-stable region of chr. 2p13.1, validated CN estimations to clinical in situ hybridization (ISH) HER2 status, and investigated the association of ERBB2 CN with clinical outcomes. 909 primary BC tissues were evaluated and the area under the curve for concordance to HER2 status was 0.93 and 0.96 for ERBB2 CN using either CEP17 or 2p13.1 as reference, respectively. The accuracy of ddPCR ERBB2 CN was 93.7% and 94.1% in the training and validation groups, respectively. Positive and negative predictive value for the classic HER2 amplification and non-amplification groups was 97.2% and 94.8%, respectively. An identified biological "ultrahigh" ERBB2 ddPCR CN group had significantly worse survival within patients treated with adjuvant trastuzumab for both recurrence-free survival (hazard ratio, HR: 3.3; 95% CI 1.1-9.6; p = 0.031, multivariable Cox regression) and overall survival (HR: 3.6; 95% CI 1.1-12.6; p = 0.041). For validation using RNA-seq data as a surrogate, in a population-based SCAN-B cohort (NCT02306096) of 682 consecutive patients receiving adjuvant trastuzumab, the ultrahigh-ERBB2 mRNA group had significantly worse survival. Multiplex ddPCR is useful for ERBB2 CN estimation and ultrahigh ERBB2 may be a predictive factor for decreased long-term survival after trastuzumab treatment.

3.
Cancer Genomics Proteomics ; 20(6suppl): 763-770, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035709

RESUMO

BACKGROUND/AIM: Circulating tumor DNA (ctDNA), which is shed from cancer cells into the bloodstream, offers a potential minimally invasive approach for cancer diagnosis and monitoring. This research aimed to assess the preoperative ctDNA levels in ovarian tumors patients' plasma and establish correlations with clinicopathological parameters and patient prognosis. PATIENTS AND METHODS: Tumor DNA was extracted from ovarian tumor tissue from 41 patients. Targeted sequencing using a panel of 127 genes recurrently mutated in cancer was performed to identify candidate somatic mutations in the tumor DNA. SAGAsafe digital PCR (dPCR) assays targeting the candidate mutations were used to measure ctDNA levels in patient plasma samples, obtained prior to surgery, to evaluate ctDNA levels in terms of mutant copy number/ml and variant allele frequency. RESULTS: Somatic mutations were found in 24 tumor samples, 17 of which were from ovarian cancer patients. The most frequently mutated gene was TP53. Preoperative plasma ctDNA levels were detected in 14 of the 24 patients. With higher stage, plasma ctDNA mutant concentration increased (p for trend <0.001). The overall survival of cancer patients with more than 10 ctDNA mutant copies/ml in plasma was significantly worse (p=0.008). CONCLUSION: Pre-operative ctDNA measurement in ovarian cancer patients' plasma holds promise as a predictive biomarker for tumor staging and prognosis.


Assuntos
DNA de Neoplasias , Neoplasias Ovarianas , Humanos , Feminino , DNA de Neoplasias/genética , Prognóstico , Mutação , Estadiamento de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Biomarcadores Tumorais/genética
4.
Cell Genom ; 2(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35720974

RESUMO

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

5.
ArXiv ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35547240

RESUMO

The COVID-19 pandemic has presented many challenges that have spurred biotechnological research to address specific problems. Diagnostics is one area where biotechnology has been critical. Diagnostic tests play a vital role in managing a viral threat by facilitating the detection of infected and/or recovered individuals. From the perspective of what information is provided, these tests fall into two major categories, molecular and serological. Molecular diagnostic techniques assay whether a virus is present in a biological sample, thus making it possible to identify individuals who are currently infected. Additionally, when the immune system is exposed to a virus, it responds by producing antibodies specific to the virus. Serological tests make it possible to identify individuals who have mounted an immune response to a virus of interest and therefore facilitate the identification of individuals who have previously encountered the virus. These two categories of tests provide different perspectives valuable to understanding the spread of SARS-CoV-2. Within these categories, different biotechnological approaches offer specific advantages and disadvantages. Here we review the categories of tests developed for the detection of the SARS-CoV-2 virus or antibodies against SARS-CoV-2 and discuss the role of diagnostics in the COVID-19 pandemic.

6.
Sci Rep ; 12(1): 4696, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304506

RESUMO

Estrogen receptor alpha (ERα, encoded by ESR1) is a well-characterized transcription factor expressed in more than 75% of breast tumors and is the key biomarker to direct endocrine therapies. On the other hand, much less is known about estrogen receptor beta (ERß, encoded by ESR2) and its importance in cancer. Previous studies had some disagreement, however most reports suggested a more favorable prognosis for patients with high ESR2 expression. To add further clarity to ESR2 in breast cancer, we interrogated a large population-based cohort of primary breast tumors (n = 3207) from the SCAN-B study. RNA-seq shows ESR2 is expressed at low levels overall with a slight inverse correlation to ESR1 expression (Spearman R = -0.18, p = 2.2e-16), and highest ESR2 expression in the basal- and normal-like PAM50 subtypes. ESR2-high tumors had favorable overall survival (p = 0.006), particularly in subgroups receiving endocrine therapy (p = 0.03) and in triple-negative breast cancer (p = 0.01). These results were generally robust in multivariable analyses accounting for patient age, tumor size, node status, and grade. Gene modules consistent with immune response were associated to ESR2-high tumors. Taken together, our results indicate that ESR2 is generally expressed at low levels in breast cancer but associated with improved overall survival and may be related to immune response modulation.


Assuntos
Neoplasias da Mama , Receptor beta de Estrogênio , Neoplasias de Mama Triplo Negativas , Mama/patologia , Neoplasias da Mama/genética , Estudos de Coortes , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Prognóstico , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética
8.
mSystems ; 6(6): e0023321, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726496

RESUMO

After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid-2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.

9.
mSystems ; 6(5): e0009521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698547

RESUMO

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease. IMPORTANCE COVID-19 involves a number of organ systems and can present with a wide range of symptoms. From how the virus infects cells to how it spreads between people, the available research suggests that these patterns are very similar to those seen in the closely related viruses SARS-CoV-1 and possibly Middle East respiratory syndrome-related CoV (MERS-CoV). Understanding the pathogenesis of the SARS-CoV-2 virus also contextualizes how the different biological systems affected by COVID-19 connect. Exploring the structure, phylogeny, and pathogenesis of the virus therefore helps to guide interpretation of the broader impacts of the virus on the human body and on human populations. For this reason, an in-depth exploration of viral mechanisms is critical to a robust understanding of SARS-CoV-2 and, potentially, future emergent human CoVs (HCoVs).

10.
JNCI Cancer Spectr ; 5(2)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33937624

RESUMO

Background: More than three-quarters of primary breast cancers are positive for estrogen receptor alpha (ER; encoded by the gene ESR1), the most important factor for directing anti-estrogenic endocrine therapy (ET). Recently, mutations in ESR1 were identified as acquired mechanisms of resistance to ET, found in 12% to 55% of metastatic breast cancers treated previously with ET. Methods: We analyzed 3217 population-based invasive primary (nonmetastatic) breast cancers (within the SCAN-B study, ClinicalTrials.gov NCT02306096), sampled from initial diagnosis prior to any treatment, for the presence of ESR1 mutations using RNA sequencing. Mutations were verified by droplet digital polymerase chain reaction on tumor and normal DNA. Patient outcomes were analyzed using Kaplan-Meier estimation and a series of 2-factor Cox regression multivariable analyses. Results: We identified ESR1 resistance mutations in 30 tumors (0.9%), of which 29 were ER positive (1.1%). In ET-treated disease, presence of ESR1 mutation was associated with poor relapse-free survival and overall survival (2-sided log-rank test P < .001 and P = .008, respectively), with hazard ratios of 3.00 (95% confidence interval = 1.56 to 5.88) and 2.51 (95% confidence interval = 1.24 to 5.07), respectively, which remained statistically significant when adjusted for other prognostic factors. Conclusions: These population-based results indicate that ESR1 mutations at diagnosis of primary breast cancer occur in about 1% of women and identify for the first time in the adjuvant setting that such preexisting mutations are associated to eventual resistance to standard hormone therapy. If replicated, tumor ESR1 screening should be considered in ER-positive primary breast cancer, and for patients with mutated disease, ER degraders such as fulvestrant or other therapeutic options may be considered as more appropriate.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Mutação , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Intervalos de Confiança , Intervalo Livre de Doença , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Fulvestranto/uso terapêutico , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sequência de RNA
11.
ArXiv ; 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33688554

RESUMO

After emerging in China in late 2019, the novel coronavirus SARS-CoV-2 spread worldwide and as of mid-2021 remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis to identify many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases, but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease.

12.
ArXiv ; 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33594340

RESUMO

The novel coronavirus SARS-CoV-2, which emerged in late 2019, has since spread around the world and infected hundreds of millions of people with coronavirus disease 2019 (COVID-19). While this viral species was unknown prior to January 2020, its similarity to other coronaviruses that infect humans has allowed for rapid insight into the mechanisms that it uses to infect human hosts, as well as the ways in which the human immune system can respond. Here, we contextualize SARS-CoV-2 among other coronaviruses and identify what is known and what can be inferred about its behavior once inside a human host. Because the genomic content of coronaviruses, which specifies the virus's structure, is highly conserved, early genomic analysis provided a significant head start in predicting viral pathogenesis and in understanding potential differences among variants. The pathogenesis of the virus offers insights into symptomatology, transmission, and individual susceptibility. Additionally, prior research into interactions between the human immune system and coronaviruses has identified how these viruses can evade the immune system's protective mechanisms. We also explore systems-level research into the regulatory and proteomic effects of SARS-CoV-2 infection and the immune response. Understanding the structure and behavior of the virus serves to contextualize the many facets of the COVID-19 pandemic and can influence efforts to control the virus and treat the disease.

13.
EMBO Mol Med ; 12(10): e12118, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926574

RESUMO

Breast cancer is a disease of genomic alterations, of which the panorama of somatic mutations and how these relate to subtypes and therapy response is incompletely understood. Within SCAN-B (ClinicalTrials.gov: NCT02306096), a prospective study elucidating the transcriptomic profiles for thousands of breast cancers, we developed a RNA-seq pipeline for detection of SNVs/indels and profiled a real-world cohort of 3,217 breast tumors. We describe the mutational landscape of primary breast cancer viewed through the transcriptome of a large population-based cohort and relate it to patient survival. We demonstrate that RNA-seq can be used to call mutations in genes such as PIK3CA, TP53, and ERBB2, as well as the status of molecular pathways and mutational burden, and identify potentially druggable mutations in 86.8% of tumors. To make this rich dataset available for the research community, we developed an open source web application, the SCAN-B MutationExplorer (http://oncogenomics.bmc.lu.se/MutationExplorer). These results add another dimension to the use of RNA-seq as a clinical tool, where both gene expression- and mutation-based biomarkers can be interrogated in real-time within 1 week of tumor sampling.


Assuntos
Neoplasias da Mama , Transcriptoma , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Análise Mutacional de DNA , Feminino , Humanos , Mutação , Estudos Prospectivos
14.
J Pathol ; 252(4): 384-397, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32815150

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of renal cancer. Due to inactivation of the von Hippel-Lindau tumour suppressor, the hypoxia-inducible transcription factors (HIFs) are constitutively activated in these tumours, resulting in a pseudo-hypoxic phenotype. The HIFs induce the expression of genes involved in angiogenesis and cell survival, but they also reset the cellular metabolism to protect cells from oxygen and nutrient deprivation. ccRCC tumours are highly vascularized and the cytoplasm of the cancer cells is filled with lipid droplets and glycogen, resulting in the histologically distinctive pale (clear) cytoplasm. Intratumoural heterogeneity may occur, and in some tumours, areas with granular, eosinophilic cytoplasm are found. Little is known regarding these traits and how they relate to the coexistent clear cell component, yet eosinophilic ccRCC is associated with higher grade and clinically more aggressive tumours. In this study, we have for the first time performed RNA sequencing comparing histologically verified clear cell and eosinophilic areas from ccRCC tissue, aiming to analyse the characteristics of these cell types. Findings from RNA sequencing were confirmed by immunohistochemical staining of biphasic ccRCC. We found that the eosinophilic phenotype displayed a higher proliferative drive and lower differentiation, and we confirmed a correlation to tumours of higher stage. We further identified mutations of the tumour suppressor p53 (TP53) exclusively in the eosinophilic ccRCC component, where mTORC1 activity was also elevated. Also, eosinophilic areas were less vascularized, yet harboured more abundant infiltrating immune cells. The cytoplasm of clear cell ccRCC cells was filled with lipids but had very low mitochondrial content, while the reverse was found in eosinophilic tissue. We herein suggest possible transcriptional mechanisms behind these phenomena. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células Renais/patologia , Eosinofilia/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Carcinoma de Células Renais/genética , Proliferação de Células/genética , Eosinofilia/genética , Humanos , Neoplasias Renais/genética , Mutação , Análise de Sequência de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
PLoS Comput Biol ; 16(6): e1007933, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559231

RESUMO

A high quality benchmark for small variants encompassing 88 to 90% of the reference genome has been developed for seven Genome in a Bottle (GIAB) reference samples. However a reliable benchmark for large indels and structural variants (SVs) is more challenging. In this study, we manually curated 1235 SVs, which can ultimately be used to evaluate SV callers or train machine learning models. We developed a crowdsourcing app-SVCurator-to help GIAB curators manually review large indels and SVs within the human genome, and report their genotype and size accuracy. SVCurator displays images from short, long, and linked read sequencing data from the GIAB Ashkenazi Jewish Trio son [NIST RM 8391/HG002]. We asked curators to assign labels describing SV type (deletion or insertion), size accuracy, and genotype for 1235 putative insertions and deletions sampled from different size bins between 20 and 892,149 bp. 'Expert' curators were 93% concordant with each other, and 37 of the 61 curators had at least 78% concordance with a set of 'expert' curators. The curators were least concordant for complex SVs and SVs that had inaccurate breakpoints or size predictions. After filtering events with low concordance among curators, we produced high confidence labels for 935 events. The SVCurator crowdsourced labels were 94.5% concordant with the heuristic-based draft benchmark SV callset from GIAB. We found that curators can successfully evaluate putative SVs when given evidence from multiple sequencing technologies.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Heurística , Humanos , Mutação INDEL
16.
Breast Cancer Res Treat ; 177(2): 447-455, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236809

RESUMO

PURPOSE: It is not known if mammographic breast compression of a primary tumor causes shedding of tumor cells into the circulatory system. Little is known about how the detection of circulating biomarkers such as circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) is affected by breast compression intervention. METHODS: CTCs and ctDNA were analyzed in blood samples collected before and after breast compression in 31 patients with primary breast cancer scheduled for neoadjuvant therapy. All patients had a central venous access to allow administration of intravenous neoadjuvant chemotherapy, which enabled blood collection from superior vena cava, draining the breasts, in addition to sampling from a peripheral vein. RESULTS: CTC and ctDNA positivity was seen in 26% and 65% of the patients, respectively. There was a significant increase of ctDNA after breast compression in central blood (p = 0.01), not observed in peripheral testing. No increase related with breast compression was observed for CTC. ctDNA positivity was associated with older age (p = 0.05), and ctDNA increase after breast compression was associated with high Ki67 proliferating tumors (p = 0.04). CTCs were more abundant in central compared to peripheral blood samples (p = 0.04). CONCLUSIONS: There was no significant release of CTCs after mammographic breast compression but more CTCs were present in central compared to peripheral blood. No significant difference between central and peripheral levels of ctDNA was observed. The small average increase in ctDNA after breast compression is unlikely to be clinically relevant. The results give support for mammography as a safe procedure from the point of view of CTC and ctDNA shedding to the blood circulation. The results may have implications for the standardization of sampling procedures for circulating tumor markers.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , DNA Tumoral Circulante , DNA de Neoplasias , Mamografia , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Neoplasias da Mama/terapia , Contagem de Células , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Mamografia/efeitos adversos , Mamografia/métodos , Pessoa de Meia-Idade , Terapia Neoadjuvante
17.
Artigo em Inglês | MEDLINE | ID: mdl-32913985

RESUMO

PURPOSE: In early breast cancer (BC), five conventional biomarkers-estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), Ki67, and Nottingham histologic grade (NHG)-are used to determine prognosis and treatment. We aimed to develop classifiers for these biomarkers that were based on tumor mRNA sequencing (RNA-seq), compare classification performance, and test whether such predictors could add value for risk stratification. METHODS: In total, 3,678 patients with BC were studied. For 405 tumors, a comprehensive multi-rater histopathologic evaluation was performed. Using RNA-seq data, single-gene classifiers and multigene classifiers (MGCs) were trained on consensus histopathology labels. Trained classifiers were tested on a prospective population-based series of 3,273 BCs that included a median follow-up of 52 months (Sweden Cancerome Analysis Network-Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), and results were evaluated by agreement statistics and Kaplan-Meier and Cox survival analyses. RESULTS: Pathologist concordance was high for ER, PgR, and HER2 (average κ, 0.920, 0.891, and 0.899, respectively) but moderate for Ki67 and NHG (average κ, 0.734 and 0.581). Concordance between RNA-seq classifiers and histopathology for the independent cohort of 3,273 was similar to interpathologist concordance. Patients with discordant classifications, predicted as hormone responsive by histopathology but non-hormone responsive by MGC, had significantly inferior overall survival compared with patients who had concordant results. This extended to patients who received no adjuvant therapy (hazard ratio [HR], 3.19; 95% CI, 1.19 to 8.57), or endocrine therapy alone (HR, 2.64; 95% CI, 1.55 to 4.51). For cases identified as hormone responsive by histopathology and who received endocrine therapy alone, the MGC hormone-responsive classifier remained significant after multivariable adjustment (HR, 2.45; 95% CI, 1.39 to 4.34). CONCLUSION: Classification error rates for RNA-seq-based classifiers for the five key BC biomarkers generally were equivalent to conventional histopathology. However, RNA-seq classifiers provided added clinical value in particular for tumors determined by histopathology to be hormone responsive but by RNA-seq to be hormone insensitive.

18.
BMC Bioinformatics ; 17(1): 199, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142976

RESUMO

BACKGROUND: TopHat is a popular spliced junction mapper for RNA sequencing data, and writes files in the BAM format - the binary version of the Sequence Alignment/Map (SAM) format. BAM is the standard exchange format for aligned sequencing reads, thus correct format implementation is paramount for software interoperability and correct analysis. However, TopHat writes its unmapped reads in a way that is not compatible with other software that implements the SAM/BAM format. RESULTS: We have developed TopHat-Recondition, a post-processor for TopHat unmapped reads that restores read information in the proper format. TopHat-Recondition thus enables downstream software to process the plethora of BAM files written by TopHat. CONCLUSIONS: TopHat-Recondition can repair unmapped read files written by TopHat and is freely available under a 2-clause BSD license on GitHub: https://github.com/cbrueffer/tophat-recondition .


Assuntos
Biologia Computacional/métodos , RNA/química , Biologia Computacional/instrumentação , RNA/genética , Splicing de RNA , Alinhamento de Sequência , Análise de Sequência de RNA , Software
19.
Oncotarget ; 6(35): 37169-84, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26439695

RESUMO

To better understand and characterize chromosomal structural variation during breast cancer progression, we enumerated chromosomal rearrangements for 11 patients by performing low-coverage whole-genome sequencing of 11 primary breast tumors and their 13 matched distant metastases. The tumor genomes harbored a median of 85 (range 18-404) rearrangements per tumor, with a median of 82 (26-310) in primaries compared to 87 (18-404) in distant metastases. Concordance between paired tumors from the same patient was high with a median of 89% of rearrangements shared (range 61-100%), whereas little overlap was found when comparing all possible pairings of tumors from different patients (median 3%). The tumors exhibited diverse genomic patterns of rearrangements: some carried events distributed throughout the genome while others had events mostly within densely clustered chromothripsis-like foci at a few chromosomal locations. Irrespectively, the patterns were highly conserved between the primary tumor and metastases from the same patient. Rearrangements occurred more frequently in genic areas than expected by chance and among the genes affected there was significant enrichment for cancer-associated genes including disruption of TP53, RB1, PTEN, and ESR1, likely contributing to tumor development. Our findings are most consistent with chromosomal rearrangements being early events in breast cancer progression that remain stable during the development from primary tumor to distant metastasis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Aberrações Cromossômicas , Cromossomos Humanos/genética , Rearranjo Gênico , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Breast Cancer Res ; 17: 102, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26242876

RESUMO

INTRODUCTION: By convention, a contralateral breast cancer (CBC) is treated as a new primary tumor, independent of the first cancer (BC1). Although there have been indications that the second tumor (BC2) sometimes may represent a metastatic spread of BC1, this has never been conclusively shown. We sought to apply next-generation sequencing to determine a "genetic barcode" for each tumor and reveal the clonal relationship of CBCs. METHODS: Ten CBC patients with detailed clinical information and available fresh frozen tumor tissue were studied. Using low-coverage whole genome DNA-sequencing data for each tumor, chromosomal rearrangements were enumerated and copy number profiles were generated. Comparisons between tumors provided an estimate of clonal relatedness for tumor pairs within individual patients. RESULTS: Between 15-256 rearrangements were detected in each tumor (median 87). For one patient, 76 % (68 out of 90) of the rearrangements were shared between BC1 and BC2, highly consistent with what has been seen for true primary-metastasis pairs (>50 %) and thus confirming a common clonal origin of the two tumors. For most of the remaining cases, BC1 and BC2 had similarly low overlap as unmatched randomized pairs of tumors from different individuals, suggesting the CBC to represent a new independent primary tumor. CONCLUSION: Using rearrangement fingerprinting, we show for the first time with certainty that a contralateral BC2 can represent a metastatic spread of BC1. Given the poor prognosis of a generalized disease compared to a new primary tumor, these women need to be identified at diagnosis of CBC for appropriate determination of treatment. Our approach generates a promising new method to assess clonal relationship between tumors. Additional studies are required to confirm the frequency of CBCs representing metastatic events.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/patologia , Adulto , Idoso de 80 Anos ou mais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...